Kernel dictionary learning based discriminant analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminant Kernel Learning Discriminant Kernel Learning via Convex Programming

Regularized Kernel Discriminant Analysis (RKDA) performs linear discriminant analysis in the feature space via the kernel trick. Its performance depends on the selection of kernels. We show that this kernel learning problem can be formulated as a semidefinite program (SDP). Based on the equivalence relationship between RKDA and least square problems in the binary-class case, we propose an effic...

متن کامل

Kernel discriminant analysis based feature selection

For two-class problems we propose two feature selection criteria based on kernel discriminant analysis (KDA). The first one is the objective function of kernel discriminant analysis called the KDA criterion. We show that the KDA criterion is monotonic for the deletion of features, which ensures stable feature selection. The second one is the recognition rate obtained by a KDA classifier, called...

متن کامل

Fuzzy Classifiers Based on Kernel Discriminant Analysis

In this paper, we discuss fuzzy classifiers based on Kernel Discriminant Analysis (KDA) for two-class problems. In our method, first we employ KDA to the given training data and calculate the component that maximally separates two classes in the feature space. Then, in the one-dimensional space obtained by KDA, we generate fuzzy rules with one-dimensional membership functions and tune the slope...

متن کامل

Kernel Reference Discriminant Analysis

Linear Discriminant Analysis (LDA) and its nonlinear version Kernel Discriminant Analysis (KDA) are well-known and widely used techniques for supervised feature extraction and dimensionality reduction. They determine an optimal discriminant space for (non)linear data projection based on certain assumptions, e.g. on using normal distributions (either on the input or in the kernel space) for each...

متن کامل

Indefinite Kernel Discriminant Analysis

Kernel methods for data analysis are frequently considered to be restricted to positive definite kernels. In practice, however, indefinite kernels arise e.g. from problem-specific kernel construction or optimized similarity measures. We, therefore, present formal extensions of some kernel discriminant analysis methods which can be used with indefinite kernels. In particular these are the multi-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Visual Communication and Image Representation

سال: 2016

ISSN: 1047-3203

DOI: 10.1016/j.jvcir.2016.07.015